Fraktal (łac. fractus – złamany, cząstkowy, ułamkowy) w znaczeniu potocznym oznacza zwykle obiekt samopodobny (tzn. taki, którego części są podobne do całości) albo „nieskończenie złożony” (ukazujący coraz bardziej złożone detale w dowolnie wielkim powiększeniu). Inaczej:figura geometryczna, której małe fragmenty oglądane w powiększeniu wyglądają tak samo jak cała figura.Ze względu na olbrzymią różnorodność przykładów matematycy obecnie unikają podawania ścisłej definicji i proponują określać fraktal jako zbiór, który posiada wszystkie cechy podane ponizej.
Pojęcie fraktala zostało wprowadzone do matematyki przez Benoît Mandelbrota w latach 70. XX wieku. Odkryty przez niego zbiór Mandelbrota nie był jednak pierwszym przykładem fraktala. Wcześniej istniała już cała gama zbiorów o niecałkowitym wymiarze Hausdorffa, postrzeganych jednak głównie jako kontrprzykłady pewnych twierdzeń. Bardziej systematycznie fraktalami zajmowała się geometryczna teoria miary, mająca swoje początki w pracach Constantina Carathéodory’ego i Felixa Hausdorffa.
Szczególnymi fraktalami – nie nazywając ich po imieniu – zajmowali się Georg Cantor, Giuseppe Peano, Wacław Sierpiński, Paul Lévy, a także Donald Knuth. Szczególny wkład w rozwój geometrycznej teorii miary wniósł Abraham Bezikowicz, który skonstruował również wiele konkretnych fraktali o paradoksalnych własnościach. Również zbiór Julii, ściśle związany ze zbiorem Mandelbrota, był badany w latach 20. zeszłego wieku. Mandelbrot, używając komputera do wizualizacji, uczynił z fraktali przedmiot intensywnych badań. O ważności tego zagadnienia zadecydowały zastosowania w różnych dziedzinach, zwłaszcza poza matematyką, np. obecnie prawie każdy telefon komórkowy korzysta z wbudowanej anteny fraktalnej. Liczne odpowiedniki fraktali istnieją też w naturze.
Za jedną z cech charakterystycznych fraktala uważa się samopodobieństwo, to znaczy podobieństwo całości do jego części. Co więcej, zbiory fraktalne mogą być samoafiniczne, tj. część zbioru może być obrazem całości przez pewne przekształcenie afiniczne. Dla figur samopodobnych można określić wielkość zwaną wymiarem samopodobieństwa lub wymiarem pudełkowym. Są to wielkości będące uogólnieniem klasycznych definicji wymiaru.
Wiadomo, że stosunek pól płaskich (wymiaru 2) figur podobnych równa się kwadratowi skali ich podobieństwa. Na przykład figura podobna do innej w skali 3 ma dziewięć razy większe pole od tamtej . W przestrzeni stosunek objętości brył (trójwymiarowych) podobnych jest sześcianem skali ich podobieństwa; bryła podobna do innej w skali 2 ma osiem razy większą objętość od tamtej. Wymiar samopodobieństwa figury daje się zatem określić jako logarytm o podstawie równej skali podobieństwa i liczbie logarytmowej wskazującej, ile razy większa od figury wyjściowej (jaką częścią figury wyjściowej) jest figura podobna do niej w tej skali. Dla fraktali liczba ta może nie być całkowita.
Struktury o budowie fraktalnej są powszechnie spotykane w przyrodzie. Przykładem mogą być krystaliczne dendryty (np. płatki śniegu), system naczyń krwionośnych, systemy wodne rzek, błyskawice lub kwiaty kalafiora.